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Abstract implementations, and statically checkable global properties.
Thus, domain engineering provides opportunities for cre-

Domain-specific languages improve the productivity of ating DSLs and SDA provides support. Throughout an
application engineers by raising the level at which they application of the SDA method, a team of method experts
define domain instances. However, more support for design- work together with the team of domain experts involved in
ing and implementing these languages in practice is needed. the domain engineering process.

The Software Design Automation (SDA) method is a spe- Implicit in the formation of this process is the as yet
cific approach for doing domain-specific language design unproven hypothesis that principled language design can be
and implementation based on a principled, semantics-based practiced as a reuse principle by software developers; it is
approach to language definition and implementation. not the sole province of highly trained experts. Articulating

This paper articulates SDA as a software development a process is the first step in testing this hypothesis.
method to be used in the context of existing domain engi- This paper describes the SDA method. The method has
neering methods. evolved from PacSoft's previous work on the Software

1. Introduction Design for Reliability and Reuse (SDRR) project [4,7,27].
An example is used to illustrate important products of the

Throughout the history of computing, domain-specific method. Throughout the paper the example text is separated

languages (DSLs) have codified knowledge and increased from the method description in boxes to distinguish parts of

the productivity of software developers. Significant DSLs

include the Formula-Translator (FORTRAN), yet another 2 T
compiler compiler (yacc), spread sheet languages, and he Example
hyper-text markup languages. Traditionally, DSLs have
been created opportunistically by visionary experts. Also, The example used throughout this paper is a subsystem
techniques for designing and implementing these languages of a Command, Control, Communications, and Intelligence
have been inadequate. (I) system. A CI system receives, analyzes, and broad-

Domain engineering provides an opportunity to system- casts messages to and from other systems snch as sensor
atically look for opportunities to introduce DSLs as a reuse arrays, databases, and human operators. One critical sub-
mechanism. Domain engineering methods support the study system is Message Translation and Validation (MTV),
of families of software systems. They provide mechanisms which validates incoming messages and then stores or
for determining the commonalities and variabilities of a rebroadcasts messages in different formats. The MTV sub-
domain, and for creating some reusable assets within a system is structured as a collection of modules, each of
domain. DSLs can also be created within this context to which is responsible for defining a data structure that can
encapsulate reusable information, represent the sensor information for a particular message

The Software Design Automation (SDA) method aug- format, performing simple data validation tests, and provid-
ments existing domain engineering methods with a princi- ing parsing and unparsing functionality for the various mes-
pled, semantics-based approach to language definition and sages' representations.
implementation. SDA integrates concepts from formal When building MTV systems, application engineers are
semantics, functional programming, and type theory to pro- presented with a semi-formal message specification (a mes-
duce domain-specific languages with provably correct sage format) and asked to build an Ada module with the
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appropriate functionality. The problem is automating the required by all domains; it translates the implementation
task of building a module from a specification. The solution independent functional specification of the solution into a
described here is the Message Specification Language concrete artifact in the language technology of the target
(MSL) [28] developed as part of the Software Design for environment.
Reliability and Reuse (SDRR) project [4]. The simple domain semantics and solver functions are

initially prototyped in SDA as semantics-based interpreters
3. Software Design Automation in a functional language. They may subsequently be refined

into more sophisticated translators.
The SDA method describes how to design and implement Dmi-pcfcLnug

DSLs within a domain engineering project. The method Dmi-pcfcLnug
consists of three phases: analyze the domain, define the lan- Isimple domain semantics
guage, and implement the generator. A high level view of
the method is pictured in Figure 1.

SDA assumes that the domain engineering method being Domain Model
used supports selecting the domain and eliciting and gather- -ove
ing necessary information. This information is captured in a sle
domain analysis document that is taken as input by the SDA
process. 

Slto oe
In the analysis phase domain information from the Slto oe

domain analysis and domain experts is formalized in models emitter
that are used for the language design. In the language defini-
tion phase the complete specification of the language is
defined based on the models collected in the first phase. This Concrete Component
definition is captured as an interpreter expressed in a func-
tional language, which is a prototype of the language that Figure 2. Conceptual Architecture of SDA generator'
can be used and validated. In the implementation phase a
generator is built from the validated language definition. 3.1. Analyze the Domain
Additional support products are also developed.

The analysis phase determines the requirements of the
1. Analyze the Domain DSL. Information from the domain analysis and domain

1. 1. Capture a written definition of the domain experts is first captured in an informal written domain defi-
1.2. Develop model nition and then extended, formalized and validated in three

1. 2.1. Model the domain models which characterize the domain, the solution, and the
1.2.2. Model the solution run-time environment. These models provide the basis for
1.2.3. Model the run-time environment the language design.

1.3. Preliminarily validate models The domain model will characterize problem instances,
2. Design the Language the solution model will functionally characterize a problem

2. 1. Define the language solution, and the environment model will constrain that
2.2. Formalize the semantics solution to reflect the realities of the technology being
2.3. Validate language design developed.

3. Implement Ultimately, the DSL being developed will-be a declara-

Figure 1. High-level View of the SDA Process tive language for describing problem instances and the

The oncptua arhitetur ofa coponnt gnertor DSL's implementation will be a generator that calculates

produced by the SDA method is given in Figure 2. The DSL isacso h ouin aifigtecntanso h

is the user-visible language for specifying components. The environment, from problem descriptions in the DSL.

domain and solution models are representations in a func- 3.1.1. Capture a Written Definition of the Domain
tional language of abstract models of the problem-view of
the domain and the functional behavior of solutions, respec- The information collected in the domain definition pro-
tively. The concrete component is a code component that vides the SDA method experts with an overview of the
meets the requirements of the run-time environment, domain. It also captures information that supports the lan-

The simple domain semantics map the DSL, which is guage design process.
only required to be expressive over distinguishing character- In this step information is gathered from the provided
istics of domain instances, on to the complete domain domain analysis documents, as well as from the domain
model. The solver maps the problem level domain model on experts and other sources as needed. The information gath-
to the lower level solution model. The emit function is not ered is captured in four parts:



1. Problem statement assets (including tools) used and produced, and the people
2. Architecture involved.
3. Initial requirements The workflow analysis provides valuable information on
4. Workflow analysis the existing notations, or specification language, used by the

The problem statement explains the purpose of software engineers. It also supports language design through identify-
components in the domain, enumerates the basic concepts in ing people and products for obtaining additional informa-
the domain, and summarizes the external functions that tion, and feedback. The workflow analysis for the MTV
domain instances provide. The example problem statement domain is summarized in Figure 5.
is captured in the introduction to the example domain in
Section 2. Informal message specification notation was

A system architecture captures the surrounding context already in use. Each message format was described by
and scope of the domain. It identifies the neighboring an Interface Control Document (ICD). ICDs arefield

domains that interact with the current domain and it defines by field descriptions of a message presented in tabular

the boundaries and interfaces of the domain. Figure 3 illus- form. Eachfield is numbered, the range of expected

trates the basic architecture of the MTV domain, values is described, any delimiters that are expected
are described, and comments on validity and units of

Message Sources the measurement are associated with each field in nat-
ural language.

Message Processor Figure 5. MTV Workflow Analysis

(EXR.) I 3.1.2. Model the Domain

"Message Message The domain model structures the common and varying
(LOG) Translation Translation Translation domain requirements from a problem-oriented view of the[ & & & I domain,

I I Validation Validation Validation Three activities contribute to the formation of the domainLUR J_-- - model:

1. Identification / abstraction of domain concepts
2. Searching for mathematical abstractions
3. Formalization of the modelIdentification and abstraction of domain concepts

involves eliciting, describing, and modeling the common
In a command and control system a message pro- and varying concepts of the domain. The entities in the

cessor accepts incoming messages, determines the domain are captured as compositions of their parts. The
message formats, and dispatches them to the appro- relationships among concepts are also captured. These are
priate MTV component. The output of the MTV com- integrated into the composition of the entities. Common and
ponent is then passed on to other components by the varying operations of the domain are also modeled. Con-
message processor cepts from the example domain are illustrated in Figure 6.

Figure 3. MTV Architecture: Message Processor The basic building blocksfor messages arefields.
Initial requirements describe the possible inputs and out- Atomic fields include representations of int~gers,

puts of the domain as well as the features or actions domain characters, strings, and enumeration types. Some
instances may offer. The requirements specification also fields are delimited.
describes behavioral constraints on domain instances. The In addition to fields, there are constraints on
initial requirements for the MTV domain are briefly summa- messages. These are simple first-order predicates on
rized in Figure 4. the contents of the fields in a message based on sim-

The high level functional requirement of MTV is ple arithmetic formulae, equalities, and inequalities.
that components process input messages. Processing Figure 6. MTV Concepts
may include validation of messages received andtranslation to other formats. Typically, the domain model has many levels. The levelsare explored in both a top down and bottom up fashion

Figure 4. MTV Initial Requirements depending on the understanding of the concepts being mod-
The workflow analysis captures information about how eled. The higher levels are refined and the low levels are

domain artifacts are currently produced. This includes infor- abstracted as domain understanding grows, until there is a
mation on the processes used, the communication patterns complete model that spans the desired levels.
of domain experts as well as the information shared, the Known abstractions, which can be applied to the current



domain, are actively sought during the analysis. These pro- domain concepts. This model also has to distinguish the
vide insight and can be reused in the current domain. For common and varying requirements of the domain, but at a
example, the solutions or certain properties of the abstrac- lower level than the domain model. The solution model
tions may be reused in the domain of study. refines the system architecture of the domain, expressing the

Of particular interest are mathematical models. Exam- generic architecture of generated components. The solution
ples of these are: graphs, grammars, or finite automata. Such model distinguishes between common and varying aspects
problems have been well studied and this knowledge may be of the design of the domain so that the design can be suited
transferable to the domain being studied. For example, the to the individual instances.
mathematical models may provide additional properties that The solution model divides the domain into the modules
can be rigorously analyzed. The mathematical model for the of related functionality. These may be required for all
example domain is captured in Figure 7. domain instances, or may depend on the particular instance.

The interfaces to the modules, sometimes known as their
The variation in this domain derives exclusively signatures, are captured in a functional language as well as

from the dife rent message form ats that are to be in the target language of the domain if necessary. The target
processed and validated. A message format descrip- language is the language to be generated during domain
tion describes a set of messages in an external for- instance creation.
mat. Thus, the user view of the domain is the On top of the module signatures, the connections, or
"language" of messages to be processed. interactions between modules are captured. These indicate

The variation in the MTV domain is naturally the flow between modules. Constraints on the solution are
modeled by a grammar describing the syntactic also captured, as well as configurations of the modules.
structure of the language. (In expressive power the These provide additional information on how the modules
languages appear to be regular, however neither can be combined, or how the modules interact. The solution
regular expressions nor left- or right-linear gram- model for the example domain is captured in Figure 8.
mars appear to be a good match conceptually.)

L _ I The solution model can be captured as an Ada
Figure 7. MTV Mathematical Model Package that includes a declaration of the datatype

Once a mathematical model has been selected, SDA providing the internal representation, a parser and
advocates building an executable representation of the unparser for the external representation, a parser
model in a typed functional language, such as Haskell. It is and unparser for the character representation, and
then illuminating to build instances corresponding to partic- validation functions that may be applied to mes-
ular examples in the domain in the functional language. This sages in the external or character representations.
step both tests the adequacy of the model and provides a In the domain analysis this package specification
foundation for subsequent validation and exploratory devel- was presented in Ada PDL (Program Description
opment at later stages of the method. Language).

Getting the model right is the most difficult and critical Fgr .MVSlto oe
step of the process. Executable representations in typed lan- Fgr .MVSlto oe
guages prove useful because: (1) naive models often contain 3.1.4. Model the Run-time Environment
type errors, (2) type checking enforces all structural con-
straints on model entities, providing assurance that the In addition to the architecture of the solution, it is neces-
examples really are covered by the model, (3) the process of sary to characterize the environment in which components
developing examples tends to illuminate regularities in the execute. This somewhat ad hoc collection of requirements is
domain that may lead to more abstract models, and (4) the called the environment model. It includes (1) the implemen-
executable model representation will be the basis of subse- tation technology of the target system, (2) significant reus-
quent prototype development. able assets (libraries) provided in the target environment,

The final model should be precise, simple, adequate, rel- and (3) non-functional constraints on the behavior of the tar-
evant, and consistent [5]. A precise model is externally cor- get system (e.g. performance, stack and heap usage).
rect or unambiguous. In a simple model, domain concepts
are structured so that they are easily understood. An ade- The legacy environment for MTV specified that
quate model conveys all of the information needed. A rele- Ada was the target language and included a mini-
vant model contains only the information needed and mum perfomnerqieet
nothing else. Finally, a consistent model contains no con- Figure c 9.MVequironment. Seiicto

flicting information.Fiue9MTEniom tSpcfain

The requirements of the environment influence the tech-
3.1.3. Model the Solution nology that may be used to implement generation. In the ini-

tial phase of the SDA project, tool support was developed
The solution model captures the solution view of the supporting source level integration of components (this



component is the emitter in Figure 2). That is, PacSoft skills, experience, and judgement.
developed a retargetable compiler tool that produces Ada or In SDA, the language design problem is essentially this:
C that can be linked directly with existing legacy code [22]. define a language in which problem instances can be effec-
In ongoing work, PacSoft is developing tool support for tively specified by domain experts and from which solutions
"object-level linking" using standard interfaces expressed in may be mechanically calculated. In addition, the language
COM or CORBA. The example environment specification is should be principled, that is it should incorporate the lan-
captured in Figure 9. guage design principles articulated by Tennent [20]. It

should be typed, support modularity and reuse, have internal
3.1.5. Preliminarily Validate Models regularity, and, as suggested by Einstein, be as simple as

possible (but no simpler).
Having assembled the three models: domain, solution psil btn ipe)
Handenvirong mbledtit w thme the moenlls: dmin, stios The method is designed to inform language design with

and environment, it is now time to mentally kick the tires as much relevant information as possible. The existing com-
and make sure the models are sufficiently coherent and at an munication patterns of the experts may already contain the
appropriate level before investing in the subsequent devel- kernel of an effective notation. The formal definition and
opment of a formal language description. This step is called validation of the domain model and solution model suggest
validation. The application of common sense in validation is an appropriate target expressive power and provide proto-
critical! type mechanisms for assembling the semantic components.

Specific activities that build confidence in coherence While the studies and models prescribed by the method
include: (1) doing a preliminary design review in which it is are informative, they are not a substitute for user (or domain
argued informally that the solver (see Figure 2) can be expert) feedback. It is critical that a "real user" be available
implemented (that is, show that all variable components of to the language designer for informal interaction and that
the solution are uniquely specified by the domain model), feedback from a community of users be systematically
(2) prototyping combinators that may be used to glue solicited periodically.
aspects of the solution together (ideally these combinators In addition to the general principles of language design,
will be well behaved algebraically, frequently they will SDA recommends the following principles for DSL design:
expressible as a monad), and (3) reviewing worked outexamleswithdomin epers. Focus on a declarative description of the problem, not
examples with domain experts. an imperative description of the solution. Language

A summary of the validation of the example domain is design driven by people with intimate knowledge of a
captured in Figure 10. particular solution is often overly biased toward that

The interpretation of the model was explored by solution. An excellent example of a radically declara-

prototyping it in ML. The prototype focused on the tive language is NASA's Amphion/NAIF system devel-

parsing problem, as it appeared the most challeng- oped by Lowry and others [8].

ing. A monadic combinator based parser was devel- Imitate good languages. Whenever appropriate imitate

oped. It used ML types to represent the data the lambda calculus, Algol, Pascal, Prolog, Haskell,

structure and the structure of the ML program to ML, or other well studied "good" examples.

implicitly represent the grammar. Basic parsers for * Never invent what you can steal. SDA advocates two

the atomic field types were implemented as MLfunc- primary approaches to reuse in language design. The

tions. These were combined systematically with first is to prototype domain-specific languages as

monadic combinators to implement concatenation, embedded languages in higher-order, typed languages

sequential product construction and alternation, such as Haskell or ML. This provides-a rich, well-

This style of prototyping made extensive use of understood type structure, basic mechanisms for

ML's typed functional features: higher-orderfunc- abstraction, control, and modularity, and gives a flexible

tions, Hindley-Milner type inference, and algebraic environment for prototyping. The second reuse strategy

datatype declarations. It could have equivalently is to use monadic building blocks to construct the

been developed in Haskell. semantics of the language out of reusable pieces (a rea-
sonable alternative would be to use Mosses's action

Figure 10. MTV Validation Summary semantics [10]).
* Avoid becoming general purpose by accident. Be aware

3.2. Design the Language of the expressive power of the language you are defin-
ing. If it can express arbitrary computation make sure it

After decades of research, language design remains one does it well.
of the most difficult and challenging activities in computer The language definition phase produces a preliminary
science. SDA advocates a particular approach to language DSL implementation as an embedded language with the
design that produces typeful, formally defined languages. simple domain semantics and solver expressed as interpret-
However, language design remains an art requiring diverse ers in a functional language so that it can be used and evalu-



ated. This phase is divided into three parts: Figure 11. MSL Language Definition
1. Language definition2. Smante defomization. The design strategy is an informal statement that identi-
2. Semantics formalization. fies the key concepts, metaphors, and models to be pursued
3. Language validation in the language definition. It identifies the concepts and

3.2.1. Define Language notations from the models and workflow products that will
organize the type system and motivate the gross syntactic

The DSL will be used to specify domain instances. Only structure of the language.

the distinguishing features of domain instances need to be The type system and gross syntactic structure of the lan-

expressible in the language. Generating instances from guage identify the atomic entities, or types, and entity com-

specifications unites the common and varying features into a position operations appropriate for each type so that all

complete solution. composite types can also be created. At a minimum there
must be methods in the language to construct entities of allThe language design proceeds with the design strategy meaningful types. Typically there will also be constructions

and the type system / gross syntactic structure of the lan- taanal tites ofpeach tyera well Whe bothacon-
that analyze entities of each type as well. When both a con-

guage. struction and analysis mechanism are present they should be

In MSL, there are three kinds of statements cor- coherent and satisfy the "correspondence principle" of

responding to the three basic concepts. Prawitz [15]. The language definition for the example

1. Type declarations derived from the message domain is captured in Figure 11.

type structure.
2. Parsing declarations will potentially intro- 3.2.2. Formalize the Semantics

duce data for any type declared in the language3. Constraint declarations will be built around A formal semantics makes explicit the relationship
a . termtla ingue dexpresiveovr tl tyes oithe arn- between the concepts introduced in the type system and syn-a term language expressive over the types of the lan- t x o h a g a e a d t e a sr ci n d nii d i htax of the language and the abstractions identified in the

guage with sufficient expressive power to express domain model and solution model. To decompose the prob-
first-order logic. In the full language, which includes lem of giving language meaning, SDA recommends that the
list and array type constructors, support for quantifi- simple domain semantics and the solver be considered sepa-
cation over elements of these types is also required. rately, and that the solver be further decomposed into sepa-

l. Type Constructors rate solvers for each identified facet of the solution.

1. Base types: The first definition of the DSL to be formalized is the

"* Integer simple domain semantics. This is a (sometimes trivial) inter-
". Integer subrange pretation of the DSL into specific instances of the domain

"* Character string model.
"* Character string of bounded length The next step is to specify the solver, which maps prob-

2. Simple type constructors: lem specifications to solutions. Recall that at an earlier stage
"* Labeled products (records) the feasibility of this translation was asserted informally;
"* Labeled sums (variants, enumeration types) this relationship is made explicit now by completing the

3. Functions: Since the language is first-order explicit formal definition of the solver.
no generalfunction type constructor is included in The structure of the solution model will be reflected in
the type language. There is a notion offunction, and the structure of the solver. If the solution model can be eas-
functions are typed, but sincefunctions are not first- ily decomposed, that decomposition can be exploited. If
class values the function type is not included in the algebraic combinators for building solution components
language of types. were developed earlier, they can be exploited in the compo-
2. Relationships between types sitional construction of solutions. The semantics of MSL is

Type Equality. Two types are equal if they have described in Figure 12.
identical structure. Two labeled products have iden- SDA suggests building solvers that are structured as
tical structure if they have identical label sets and semantics-based interpreters of the domain model. Other
the structure of all corresponding labeled compo- technologies may be supported in the future. In a semantics-.
nentfields are identical. based approach, underlying abstractions can be used to

Type Ordering. A simple form of subtyping is structure the solution. Many critical facets of the semantics
induced from the integer subranges and string length of traditional languages are expressed using a simple cate-
declarations. gorical concept called a monad (or triple) [9]. This mecha-

Type Abstraction. Types are named at top level, nism allows semantic concepts to be expressed and
but there is no notion ofpolymorphism or quantifica- combined in a more modular fashion than has been previ-
tion over types. ously possible. It also provides structure and guidance to the



design space of language features [24,25]. In particular, it is prototype implementation has been developed as an embed-
possible to articulate a short list of semantic features and ded language in a functional host language. It is now neces-
characterize their potential meaningful interactions. This sary to build a tool that can be used by the application
added structure simplifies the problem of language design. engineers.

SDA supports this style of principled language definition The first step is to critique the prototype. If it is adequate
in two ways: a methodology that builds on the rich tradition there is no reason to proceed with further refinement of the
of semantics and the recent results in monadic abstraction, implementation. Typically, the prototype may fail to be ade-
and a tool kit that allows implementations to achieve the quate because: (1) the integration requirements in the envi-
reuse promised by the method. ronment model require the two-stage form of a compiler or

code generator, (2) the interpreter does not meet the con-
In the case of MSL, the domain semantics essen- straints of the run-time environment model, or (3) the user

tially unfolded all the named intermediate values interface of the interpreter may not be suitable for the
(which were introduced to satisfy the principle of intended user community. These issues are discussed below.
abstraction and subsequently enabled significant
reuse) and yielded a single parsing action that The implementation strategy selected was to
matched exactly the message type being specified, implement a traditional compiler architecture to
The abstract syntax of the source language and the translate from MSL to an ML-like functional lan-
domain model were sufficiently similar that the guage from which we could use other tools to calcu-
closed, irreducible terms of the abstract syntax were late an implementation in Ada. An alternative
used to represent instances of the domain model. implementation strategy involving an interpreter

was explored by Tolmach [21]. His interpreter
The solver for parsing is given by providing reuses the front-end and type-checker of the com-

appropriate interpretations for the primitive opera- piler described below.
tors and mapping the meaning of composite opera- Figure 13. MSL Implementation Strategy
tors (such as sum and product) onto the
corresponding monadic combinators. In this way a Staging
parsing semantics can be given to the domain model An interpreter is a program that contains an eval function
that is independent of which representation is being that maps a program into a behavior function expressed in
parsed [28]. Similarly, an almost identical represen- the same execution environment as eval. In contrast, a com-
tation independent unparsing semantics can also be piler (or a generator) is a program that contains a compile
given. Curiously, the unparser does not appear to be function that maps a program into an executable object that
abstracted over a monadic structure [28]. when subsequently executed behaves according to the speci-

Figure 12. MSL Semantics fication of the program. This difference between interpreters
and compilers is characterized by their execution stages.

3.2.3. Validate Language Design The interpreter has a single stage, containing both eval and
the behavior. The compiler or generator has two stages:

As the language is developed, it is validated internally by "compile-time" when the compile function is executed and
the team as well as externally by the intended users. Valida- "run-time" when the specified behavior occurs.
tion ensures that the language definition is correct and com- The methods for prototyping the solver as an interpreter
plete. Feedback from the intended users is key for usability produce a single-stage component. Single-stage systems
aspects of the language. This includes the ease of transition- may be appropriate for some environments, particularly
ing the language into practice once it is finished, ones in which performance is not critical and a high-level

If formal validation is required, it is possible to charac- interface (such as COM or CORBA) can be exploited for
terize and prove properties about the simple domain seman- connection with other system assets.
tics and the solver that address critical correctness issues. In performance critical systems that require code-level
For example, Walton has proven properties about the MSL integration in legacy languages (such as C or Ada) a transla-
generator that characterize the correct interaction of parsing tor is typically required. Sheard, Taha, and Benaissa have
and generation solution modules [27]. Similarly, Peyton developed extensive tools and techniques based on typed-
Jones, Meijer, and Leijen have been able to prove associativ- metaprogramming for the systematic conversion of single-
ity of a "parallel composition" operation for a domain-spe- stage interpreters into multi-stage translators [19]. These
cific language for animation behaviors in COM [14]. tools are part of the SDA technology.

3.3. Implement Environment Constraints
In many applications, the generated solutions must inter-

Implementing the generator is the last phase of the SDA operate closely with legacy code expressed in a conven-
method. At this point the language has been defined and a tional imperative language, such as C or Ada. In this case a



systematic translation of the behavior from the specifica- tion on the domain and designing and developing reusable
tions in the functional prototype to the legacy language is assets for the domain. SDA aims to be integrated with these
required. (This is called the emitter in Figure 2.) PacSoft has types of methods. SDA enhances domain engineering meth-
developed extensive compilation infrastructure to support ods with activities for designing and developing DSLs for
this. Building on ideas of Kieburtz and Volpano [23], Oliva generating reusable components, which can be integrated
and Tolmach developed a highly parameterized functional with the rest of the domain engineering products.
language compiler called RML (Restricted ML) [22]. RML ML versions of standard compiler tootsfor texi-
compiles a simple functional language to C or Ada in a type cal analysis and parsing were used to construct the
faithful way, and has extensive mechanisms for encapsulat- front end. Abstract syntax was expressed as a poly-
ing legacy assets (such as libraries) so that they may be used morphic ML datatype. The polymorphism allowed
efficiently by the generated code. for the type system to enforce fine distinctions in the

To use RML to implement an emitter, the solver is first level of analysis and rewriting applied to the
staged (either manually as was done with MSL or automati- abstract syntax.
cally with the tools described above), then the functional The simple domain semantics were expressed as
program expressing the behavior of the generated compo- a catamorphism (a particular kind of simple struc-
nent is compiled to the legacy language by the RML com- tured recursivefunction definition) over the abstract
piler. syntax. The back-end directly reflected the structure

Appropriate User Interface and Analyses of the solver, with the regularity of generation of the

The third typical shortcoming of the prototype language parsing and unparsing operations manifest in the

environment is the appropriateness of the tool for use by the structure of the code.

intended domain experts. Specific issues here can include and im binators

(1) unintuitive interaction between the host and embedded Mndlike targe la nagof the ped in com
langage(e~. cmple tye eror tht exoseimpemeta- ML-like target language of the DSL-specific corn-

language (e.g. complex type errors that expose implementa- piler described here. In the initial implementation
tion details), (2) opportunities for a more refined (or possi- this library was implementedfrom minimal primi-
bly more liberal) type discipline than that inherited from the tives in the ML-like target language. This system,
host language, (3) the need to produce high-quality error while reliable, performed poorly due to code bloat
messages, and (4) the opportunity to have a non-textual rep- [28,13]. Once the abstract machine became stable,
resentation of the language. this implementation was replaced by an implementa-

Currently all of these "front-end" and analysis issues areaddrsse inSDAby uingconentonalcomile imle- tion in a hybrid of the ML-like target language and
addressed in SDA by using conventional compiler imple- Ada [21]. This reimplementation exploited specific
mentation technologies and methods. For example, the lexi- mechanisms for developing such hybrid implementa-
cal analysis and parsing in the MSL implementation was
developed with ML-lex and ML-yacc. The type inference

algorithm was coded by hand in SML. Figure 14. MSL Implementation Plans

Another issue to be considered when critiquing the pro- Other projects investigating the design and development
totype is if the DSL provides opportunities for tools other of DSLs include work on the Draco project, the GenVoca
than the generator that might be useful to the users. These project, the Amphion project, and the FAST method. A brief
tools might include analysis tools or test-case generators. introduction to these projects and their relation to SDA is
Often these may be defined in the context of the semantics- described below.
based interpreter as a "non-standard semantics" of the The Draco approach to domain engineering is described
model. through the products that are created and input into the

Draco mechanism [11,12]. The Draco mechanism takes a
Once the critique is complete a design and implementa- description of a DSL in six parts:

tion plan for the language environment must be developed • a parser for the language objects and operations,
and executed. The implementation strategy and plans for the
MTV domain are captured in Figure 13 and Figure 14. - aptimprintr,•optimizing transformations,

4. Related Work a reusable components which capture the various seman-
tics for language objects and operations,

Most well known domain engineering methods aim at • generators for language parts that can be generated

creating libraries of reusable components or domain-specific automatically to code,

architectures, not DSLs. Examples include: Model Based • and analyzers for the language
Software Engineering, Organizational Domain Modeling, System descriptions in a DSL are then transformed, with
and Synthesis [16,18,17]. These methods typically include human guidance, into working systems through the Draco
activities for selecting/scoping a domain, gathering informa- mechanism.



This approach differs in a couple aspects from SDA. cific languages. Our emphasis has been on languages for the
First, the transformations in Draco require human guidance. description of systems components and the automatic gener-
Second, the process for designing languages and for creat- ation of these components. We have developed a set of tools
ing the products which are input into Draco is not well and techniques for DSL design and implementation that
defined, and neither are the products. focus on the application of semantics and programming lan-

The GenVoca project studies how to build software sys- guage principles [4,22]. Using these tools we have devel-
tern generators [3]. Software system generators are tools for oped a reliable DSL for Message Specification and
assembling software from interchangeable reusable compo- Translation that has been experimentally validated and is
nents. Therefore, this is a compositional approach to lan- incorporated in an Air Force demonstration command and
guages whereas SDA is a transformational approach. control system [4,27]. We have also worked with Lucent on

The DSL constructs consist of the ways to capture the the design of languages for use in telephony [26].
possible compositions of components. These are not deter- Explicitly defining the SDA method is a first step in test-
mined through a language design process, but rather from ing whether principled language design can be practiced as a
the architecture of the components. reuse principle by software developers, and that it is not the

The Amphion project creates languages to help non-pro- sole province of highly trained experts. The integration of
grammers better use software libraries [8]. A domain theory SDA with domain engineering methods provides a mecha-
is created for each domain which relates the problem area to nism for bringing these "academic best practices" into engi-
the subroutines available in the library. A problem statement neering use. There, they can be applied and evaluated on
is captured as a relation between the inputs and outputs. A real world problems.
theorem prover is used to materialize the relation using We are actively collaborating with domain engineering
deductive synthesis and generate a working program. researchers and practitioners at Lucent Technologies to test

The Amphion approach has a similar conceptual archi- our ideas in the real world, and to evolve the process based
tecture to SDA's (see Figure 2). The difference is that the on these experiences.
solver uses a deductive theorem prover instead of a seman- Currently, there are still some significant barriers, not the
tics based interpreter. Another difference between Amphion least of which is the educational and conceptual background
and SDA is that there is no documented method on how to necessary to execute the SDA method. We continue to
create the libraries or the languages, only on how to capture address these issues by developing a curriculum that focuses
the domain theory which relates the two. on the design of domain-specific languages as an engineer-

FAST is a domain engineering method for analyzing ing practice.
software families and for developing DSLs for them [2]. Software Engineers need to learn the principles of lan-
FAST includes a well documented and validated commonal- guage design not just because it is part of the core body of
ity analysis subprocess, which groups domain experts knowledge that every computer scientist should know, but
together to gather, analyze and capture domain information, because they will need to know it to effectively build
Other steps in the FAST process aim to build on this analy- domain-specific languages, an important form of reusable
sis to define and develop a DSL, an application engineering assets.
environment, and a standard application engineering pro-
cess. However, these steps are not well defined in the FAST Acknowledgments
literature as are the commonality analysis steps.
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